图书介绍
结构动力学 理论及其在地震工程中的应用 第3版 英文【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- (美)AnilK.Chopra著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302202189
- 出版时间:2009
- 标注页数:878页
- 文件大小:103MB
- 文件页数:915页
- 主题词:结构动力学-英文
PDF下载
下载说明
结构动力学 理论及其在地震工程中的应用 第3版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ SINGLE-DEGREE-OF-FREEDOM SYSTEMS1
1 Equations of Motion,Problem Statement,and Solution Methods3
1.1 Simple Structures3
1.2 Single-Degree-of-Freedom System7
1.3 Force-Displacement Relation8
1.4 Damping Force12
1.5 Equation of Motion:External Force14
1.6 Mass-Spring-Damper System19
1.7 Equation of Motion:Earthquake Excitation23
1.8 Problem Statement and Element Forces26
1.9 Combining Static and Dynamic Responses28
1.10 Methods of Solution of the Differential Equation28
1.11 Study of SDF Systems:Organization33
Appendix 1:Stiffness Coefficients for a Flexural Element33
2 Free Vibration39
2.1 Undamped Free Vibration39
2.2 Viscously Damped Free Vibration48
2.3 Energy in Free Vibration56
2.4 Coulomb-Damped Free Vibration57
3 Response to Harmonic and Periodic Excitations65
Part A:Viscously Damped Systems:Basic Results66
3.1 Harmonic Vibration of Undamped Systems66
3.2 Harmonic Vibration with Viscous Damping72
Part B:Viscously Damped Systems:Applications85
3.3 Response to Vibration Generator85
3.4 Natural Frequency and Damping from Harmonic Tests87
3.5 Force Transmission and Vibration Isolation90
3.6 Response to Ground Motion and Vibration Isolation91
3.7 Vibration-Measuring Instruments95
3.8 Energy Dissipated in Viscous Damping99
3.9 Equivalent Viscous Damping103
Part C:Systems with Nonviscous Damping105
3.10 Harmonic Vibration with Rate-Independent Damping105
3.11 Harmonic Vibration with Coulomb Friction109
Part D:Response to Periodic Excitation113
3.12 Fourier Series Representation114
3.13 Response to Periodic Force114
Appendix 3:Four-Way Logarithmic Graph Paper118
4 Response to Arbitrary,Step,and Pulse Excitations125
Part A:Response to Arbitrarily Time-Varying Forces125
4.1 Response to Unit Impulse126
4.2 Response to Arbitrary Force127
Part B:Response to Step and Ramp Forces129
4.3 Step Force129
4.4 Ramp or Linearly Increasing Force131
4.5 Step Force with Finite Rise Time132
Part C:Response to Pulse Excitations135
4.6 Solution Methods135
4.7 Rectangular Pulse Force137
4.8 Half-Cycle Sine Pulse Force143
4.9 Symmetrical Triangular Pulse Force148
4.10 Effects of Pulse Shape and Approximate Analysis for Short Pulses151
4.11 Effects of Viscous Damping154
4.12 Response to Ground Motion155
5 Numerical Evaluation of Dynamic Response165
5.1 Time-Stepping Methods165
5.2 Methods Based on Interpolation of Excitation167
5.3 Central Difference Method171
5.4 Newmark’s Method174
5.5 Stability and Computational Error180
5.6 Analysis of Nonlinear Response:Central Difference Method184
5.7 Analysis of Nonlinear Response:Newmark’s Method184
6 Earthquake Response of Linear Systems197
6.1 Earthquake Excitation197
6.2 Equation of Motion203
6.3 Response Quantities204
6.4 Response History205
6.5 Response Spectrum Concept207
6.6 Deformation,Pseudo-velocity,and Pseudo-acceleration Response Spectra208
6.7 Peak Structural Response from the Response Spectrum217
6.8 Response Spectrum Characteristics222
6.9 Elastic Design Spectrum230
6.10 Comparison of Design and Response Spectra239
6.11 Distinction between Design and Response Spectra241
6.12 Velocity and Acceleration Response Spectra242
Appendix 6:El Centro,1940 Ground Motion246
7 Earthquake Response of Inelastic Systems257
7.1 Force-Deformation Relations258
7.2 Normalized Yield Strength,Yield Strength Reduction Factor,and Ductility Factor264
7.3 Equation of Motion and Controlling Parameters265
7.4 Effects of Yielding266
7.5 Response Spectrum for Yield Deformation and Yield Strength273
7.6 Yield Strength and Deformation from the Response Spectrum277
7.7 Yield Strength-Ductility Relation277
7.8 Relative Effects of Yielding and Damping279
7.9 Dissipated Energy280
7.10 Energy Dissipation Devices283
7.11 Inelastic Design Spectrum288
7.12 Applications of the Design Spectrum295
7.13 Comparison of Design and Response Spectra301
8 Generalized Single-Degree-of-Freedom Systems305
8.1 Generalized SDF Systems305
8.2 Rigid-Body Assemblages307
8.3 Systems with Distributed Mass and Elasticity309
8.4 Lumped-Mass System:Shear Building321
8.5 Natural Vibration Frequency by Rayleigh’s Method328
8.6 Selection of Shape Function332
Appendix 8:Inertia Forces for Rigid Bodies336
PART Ⅱ MULTI-DEGREE-OF-FREEDOM SYSTEMS343
9 Equations of Motion,Problem Statement,and Solution Methods345
9.1 Simple System:Two-Story Shear Building345
9.2 General Approach for Linear Systems350
9.3 Static Condensation367
9.4 Planar or Symmetric-Plan Systems:Ground Motion370
9.5 Unsymmetric-Plan Buildings:Ground Motion375
9.6 Symmetric-Plan Buildings:Torsional Excitation383
9.7 Multiple Support Excitation384
9.8 Inelastic Systems389
9.9 Problem Statement389
9.10 Element Forces390
9.11 Methods for Solving the Equations of Motion:Overview390
10 Free Vibration401
Part A:Natural Vibration Frequencies and Modes402
10.1 Systems without Damping402
10.2 Natural Vibration Frequencies and Modes404
10.3 Modal and Spectral Matrices406
10.4 Orthogonality of Modes407
10.5 Interpretation of Modal Orthogonality408
10.6 Normalization of Modes408
10.7 Modal Expansion of Displacements418
Part B:Free Vibration Response419
10.8 Solution of Free Vibration Equations:Undamped Systems419
10.9 Free Vibration of Systems with Damping422
10.10 Solution of Free Vibration Equations:Classically Damped Systems426
Part C:Computation of Vibration Properties428
10.11 Solution Methods for the Eigenvalue Problem428
10.12 Rayleigh’s Quotient430
10.13 Inverse Vector Iteration Method430
10.14 Vector Iteration with Shifts:Preferred Procedure435
10.15 Transformation of kφ=ω2mφ to the Standard Form440
11 Damping In Structures447
Part A:Experimental Data and Recommended Modal Damping Ratios447
11.1 Vibration Properties of Millikan Library Building447
11.2 Estimating Modal Damping Ratios452
Part B:Construction of Damping Matrix454
11.3 Damping Matrix454
11.4 Classical Damping Matrix455
11.5 Nonclassical Damping Matrix463
12 Dynamic Analysis and Response of Linear Systems467
Part A:Two-Degree-of-Freedom Systems467
12.1 Analysis of Two-DOF Systems without Damping467
12.2 Vibration Absorber or Tuned Mass Damper470
Part B:Modal Analysis472
12.3 Modal Equations for Undamped Systems472
12.4 Modal Equations for Damped Systems475
12.5 Displacement Response476
12.6 Element Forces477
12.7 Modal Analysis:Summary477
Part C:Modal Response Contributions482
12.8 Modal Expansion of Excitation Vector p(t)=sp(t)482
12.9 Modal Analysis for p(t)=sp(t)486
12.10 Modal Contribution Factors487
12.11 Modal Responses and Required Number of Modes489
Part D:Special Analysis Procedures496
12.12 Static Correction Method496
12.13 Mode Acceleration Superposition Method499
12.14 Analysis of Nonclassically Damped Systems500
13 Earthquake Analysis of Linear Systems507
Part A:Response History Analysis508
13.1 Modal Analysis508
13.2 Multistory Buildings with Symmetric Plan514
13.3 Multistory Buildings with Unsymmetric Plan533
13.4 Torsional Response of Symmetric-Plan Buildings544
13.5 Response Analysis for Multiple Support Excitation548
13.6 Structural Idealization and Earthquake Response554
Part B:Response Spectrum Analysis555
13.7 Peak Response from Earthquake Response Spectrum555
13.8 Multistory Buildings with Symmetric Plan560
13.9 Multistory Buildings with Unsymmetric Plan572
14 Reduction of Degrees of Freedom593
14.1 Kinematic Constraints594
14.2 Mass Lumping in Selected DOFs595
14.3 Rayleigh-Ritz Method595
14.4 Selection of Ritz Vectors599
14.5 Dynamic Analysis Using Ritz Vectors604
15 Numerical Evaluation of Dynamic Response609
15.1 Time-Stepping Methods609
15.2 Analysis of Linear Systems with Nonclassical Damping611
15.3 Analysis of Nonlinear Systems618
16 Systems with Distributed Mass and Elasticity629
16.1 Equation of Undamped Motion:Applied Forces630
16.2 Equation of Undamped Motion:Support Excitation631
16.3 Natural Vibration Frequencies and Modes632
16.4 Modal Orthogonality639
16.5 Modal Analysis of Forced Dynamic Response641
16.6 Earthquake Response History Analysis648
16.7 Earthquake Response Spectrum Analysis653
16.8 Difficulty in Analyzing Practical Systems656
17 Introduction to the Finite Element Method661
Part A:Rayleigh-Ritz Method661
17.1 Formulation Using Conservation of Energy661
17.2 Formulation Using Virtual Work665
17.3 Disadvantages of Rayleigh-Ritz Method667
Part B:Finite Element Method667
17.4 Finite Element Approximation667
17.5 Analysis Procedure669
17.6 Element Degrees of Freedom and Interpolation Functions671
17.7 Element Stiffness Matrix672
17.8 Element Mass Matrix673
17.9 Element (Applied) Force Vector675
17.10 Comparison of Finite Element and Exact Solutions679
17.11 Dynamic Analysis of Structural Continua680
PART Ⅲ EARTHQUAKE RESPONSE AND DESIGN OF MULTISTORY BUILDINGS687
18 Earthquake Response of Linearly Elastic Buildings689
18.1 Systems Analyzed,Design Spectrum,and Response Quantities689
18.2 Influence of T1 and ρ on Response694
18.3 Modal Contribution Factors695
18.4 Influence of T1 on Higher-Mode Response697
18.5 Influence of ρ on Higher-Mode Response700
18.6 Heightwise Variation of Higher-Mode Response701
18.7 How Many Modes to Include703
19 Earthquake Analysis and Response of Inelastic Buildings707
Part A:Nonlinear Response History Analysis708
19.1 Equations of Motion:Formulation and Solution708
19.2 Computing Seismic Demands:Factors To Be Considered709
19.3 Story Drift Demands713
19.4 Strength Demands for SDF and MDF Systems719
Part B:Approximate Analysis Procedures720
19.5 Motivation and Basic Concept720
19.6 Uncoupled Modal Response History Analysis722
19.7 Modal Pushover Analysis729
19.8 Evaluation of Modal Pushover Analysis734
19.9 Simplified Modal Pushover Analysis for Practical Application739
20 Earthquake Dynamics of Base-Isolated Buildings741
20.1 Isolation Systems741
20.2 Base-Isolated One-Story Buildings744
20.3 Effectiveness of Base Isolation750
20.4 Base-Isolated Multistory Buildings754
20.5 Applications of Base Isolation760
21 Structural Dynamics in Building Codes767
Part A:Building Codes and Structural Dynamics768
21.1 International Building Code (United States),2006768
21.2 National Building Code of Canada,2005771
21.3 Mexico Federal District Code,2004773
21.4 Eurocode 8,2004775
21.5 Structural Dynamics in Building Codes778
Part B:Evaluation of Building Codes784
21.6 Base Shear784
21.7 Story Shears and Equivalent Static Forces788
21.8 Overturning Moments790
21.9 Concluding Remarks793
22 Structural Dynamics in Building Evaluation Guidelines795
22.1 Nonlinear Dynamic Procedure:Current Practice796
22.2 SDF-System Estimate of Roof Displacement797
22.3 Estimating Deformation of Inelastic SDF Systems799
22.4 Nonlinear Static Procedure806
22.5 Concluding Remarks812
A Frequency-Domain Method of Response Analysis815
B Notation837
C Answers to Selected Problems849
Index865
热门推荐
- 1365839.html
- 1039893.html
- 531641.html
- 2117926.html
- 3369642.html
- 1073502.html
- 1955076.html
- 2413880.html
- 1925841.html
- 405416.html
- http://www.ickdjs.cc/book_3467715.html
- http://www.ickdjs.cc/book_972224.html
- http://www.ickdjs.cc/book_480802.html
- http://www.ickdjs.cc/book_1347967.html
- http://www.ickdjs.cc/book_548521.html
- http://www.ickdjs.cc/book_3315756.html
- http://www.ickdjs.cc/book_2092193.html
- http://www.ickdjs.cc/book_3221150.html
- http://www.ickdjs.cc/book_317611.html
- http://www.ickdjs.cc/book_1941505.html