图书介绍

结构动力学 理论及其在地震工程中的应用 第3版 英文【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

结构动力学 理论及其在地震工程中的应用 第3版 英文
  • (美)AnilK.Chopra著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302202189
  • 出版时间:2009
  • 标注页数:878页
  • 文件大小:103MB
  • 文件页数:915页
  • 主题词:结构动力学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

结构动力学 理论及其在地震工程中的应用 第3版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART Ⅰ SINGLE-DEGREE-OF-FREEDOM SYSTEMS1

1 Equations of Motion,Problem Statement,and Solution Methods3

1.1 Simple Structures3

1.2 Single-Degree-of-Freedom System7

1.3 Force-Displacement Relation8

1.4 Damping Force12

1.5 Equation of Motion:External Force14

1.6 Mass-Spring-Damper System19

1.7 Equation of Motion:Earthquake Excitation23

1.8 Problem Statement and Element Forces26

1.9 Combining Static and Dynamic Responses28

1.10 Methods of Solution of the Differential Equation28

1.11 Study of SDF Systems:Organization33

Appendix 1:Stiffness Coefficients for a Flexural Element33

2 Free Vibration39

2.1 Undamped Free Vibration39

2.2 Viscously Damped Free Vibration48

2.3 Energy in Free Vibration56

2.4 Coulomb-Damped Free Vibration57

3 Response to Harmonic and Periodic Excitations65

Part A:Viscously Damped Systems:Basic Results66

3.1 Harmonic Vibration of Undamped Systems66

3.2 Harmonic Vibration with Viscous Damping72

Part B:Viscously Damped Systems:Applications85

3.3 Response to Vibration Generator85

3.4 Natural Frequency and Damping from Harmonic Tests87

3.5 Force Transmission and Vibration Isolation90

3.6 Response to Ground Motion and Vibration Isolation91

3.7 Vibration-Measuring Instruments95

3.8 Energy Dissipated in Viscous Damping99

3.9 Equivalent Viscous Damping103

Part C:Systems with Nonviscous Damping105

3.10 Harmonic Vibration with Rate-Independent Damping105

3.11 Harmonic Vibration with Coulomb Friction109

Part D:Response to Periodic Excitation113

3.12 Fourier Series Representation114

3.13 Response to Periodic Force114

Appendix 3:Four-Way Logarithmic Graph Paper118

4 Response to Arbitrary,Step,and Pulse Excitations125

Part A:Response to Arbitrarily Time-Varying Forces125

4.1 Response to Unit Impulse126

4.2 Response to Arbitrary Force127

Part B:Response to Step and Ramp Forces129

4.3 Step Force129

4.4 Ramp or Linearly Increasing Force131

4.5 Step Force with Finite Rise Time132

Part C:Response to Pulse Excitations135

4.6 Solution Methods135

4.7 Rectangular Pulse Force137

4.8 Half-Cycle Sine Pulse Force143

4.9 Symmetrical Triangular Pulse Force148

4.10 Effects of Pulse Shape and Approximate Analysis for Short Pulses151

4.11 Effects of Viscous Damping154

4.12 Response to Ground Motion155

5 Numerical Evaluation of Dynamic Response165

5.1 Time-Stepping Methods165

5.2 Methods Based on Interpolation of Excitation167

5.3 Central Difference Method171

5.4 Newmark’s Method174

5.5 Stability and Computational Error180

5.6 Analysis of Nonlinear Response:Central Difference Method184

5.7 Analysis of Nonlinear Response:Newmark’s Method184

6 Earthquake Response of Linear Systems197

6.1 Earthquake Excitation197

6.2 Equation of Motion203

6.3 Response Quantities204

6.4 Response History205

6.5 Response Spectrum Concept207

6.6 Deformation,Pseudo-velocity,and Pseudo-acceleration Response Spectra208

6.7 Peak Structural Response from the Response Spectrum217

6.8 Response Spectrum Characteristics222

6.9 Elastic Design Spectrum230

6.10 Comparison of Design and Response Spectra239

6.11 Distinction between Design and Response Spectra241

6.12 Velocity and Acceleration Response Spectra242

Appendix 6:El Centro,1940 Ground Motion246

7 Earthquake Response of Inelastic Systems257

7.1 Force-Deformation Relations258

7.2 Normalized Yield Strength,Yield Strength Reduction Factor,and Ductility Factor264

7.3 Equation of Motion and Controlling Parameters265

7.4 Effects of Yielding266

7.5 Response Spectrum for Yield Deformation and Yield Strength273

7.6 Yield Strength and Deformation from the Response Spectrum277

7.7 Yield Strength-Ductility Relation277

7.8 Relative Effects of Yielding and Damping279

7.9 Dissipated Energy280

7.10 Energy Dissipation Devices283

7.11 Inelastic Design Spectrum288

7.12 Applications of the Design Spectrum295

7.13 Comparison of Design and Response Spectra301

8 Generalized Single-Degree-of-Freedom Systems305

8.1 Generalized SDF Systems305

8.2 Rigid-Body Assemblages307

8.3 Systems with Distributed Mass and Elasticity309

8.4 Lumped-Mass System:Shear Building321

8.5 Natural Vibration Frequency by Rayleigh’s Method328

8.6 Selection of Shape Function332

Appendix 8:Inertia Forces for Rigid Bodies336

PART Ⅱ MULTI-DEGREE-OF-FREEDOM SYSTEMS343

9 Equations of Motion,Problem Statement,and Solution Methods345

9.1 Simple System:Two-Story Shear Building345

9.2 General Approach for Linear Systems350

9.3 Static Condensation367

9.4 Planar or Symmetric-Plan Systems:Ground Motion370

9.5 Unsymmetric-Plan Buildings:Ground Motion375

9.6 Symmetric-Plan Buildings:Torsional Excitation383

9.7 Multiple Support Excitation384

9.8 Inelastic Systems389

9.9 Problem Statement389

9.10 Element Forces390

9.11 Methods for Solving the Equations of Motion:Overview390

10 Free Vibration401

Part A:Natural Vibration Frequencies and Modes402

10.1 Systems without Damping402

10.2 Natural Vibration Frequencies and Modes404

10.3 Modal and Spectral Matrices406

10.4 Orthogonality of Modes407

10.5 Interpretation of Modal Orthogonality408

10.6 Normalization of Modes408

10.7 Modal Expansion of Displacements418

Part B:Free Vibration Response419

10.8 Solution of Free Vibration Equations:Undamped Systems419

10.9 Free Vibration of Systems with Damping422

10.10 Solution of Free Vibration Equations:Classically Damped Systems426

Part C:Computation of Vibration Properties428

10.11 Solution Methods for the Eigenvalue Problem428

10.12 Rayleigh’s Quotient430

10.13 Inverse Vector Iteration Method430

10.14 Vector Iteration with Shifts:Preferred Procedure435

10.15 Transformation of kφ=ω2mφ to the Standard Form440

11 Damping In Structures447

Part A:Experimental Data and Recommended Modal Damping Ratios447

11.1 Vibration Properties of Millikan Library Building447

11.2 Estimating Modal Damping Ratios452

Part B:Construction of Damping Matrix454

11.3 Damping Matrix454

11.4 Classical Damping Matrix455

11.5 Nonclassical Damping Matrix463

12 Dynamic Analysis and Response of Linear Systems467

Part A:Two-Degree-of-Freedom Systems467

12.1 Analysis of Two-DOF Systems without Damping467

12.2 Vibration Absorber or Tuned Mass Damper470

Part B:Modal Analysis472

12.3 Modal Equations for Undamped Systems472

12.4 Modal Equations for Damped Systems475

12.5 Displacement Response476

12.6 Element Forces477

12.7 Modal Analysis:Summary477

Part C:Modal Response Contributions482

12.8 Modal Expansion of Excitation Vector p(t)=sp(t)482

12.9 Modal Analysis for p(t)=sp(t)486

12.10 Modal Contribution Factors487

12.11 Modal Responses and Required Number of Modes489

Part D:Special Analysis Procedures496

12.12 Static Correction Method496

12.13 Mode Acceleration Superposition Method499

12.14 Analysis of Nonclassically Damped Systems500

13 Earthquake Analysis of Linear Systems507

Part A:Response History Analysis508

13.1 Modal Analysis508

13.2 Multistory Buildings with Symmetric Plan514

13.3 Multistory Buildings with Unsymmetric Plan533

13.4 Torsional Response of Symmetric-Plan Buildings544

13.5 Response Analysis for Multiple Support Excitation548

13.6 Structural Idealization and Earthquake Response554

Part B:Response Spectrum Analysis555

13.7 Peak Response from Earthquake Response Spectrum555

13.8 Multistory Buildings with Symmetric Plan560

13.9 Multistory Buildings with Unsymmetric Plan572

14 Reduction of Degrees of Freedom593

14.1 Kinematic Constraints594

14.2 Mass Lumping in Selected DOFs595

14.3 Rayleigh-Ritz Method595

14.4 Selection of Ritz Vectors599

14.5 Dynamic Analysis Using Ritz Vectors604

15 Numerical Evaluation of Dynamic Response609

15.1 Time-Stepping Methods609

15.2 Analysis of Linear Systems with Nonclassical Damping611

15.3 Analysis of Nonlinear Systems618

16 Systems with Distributed Mass and Elasticity629

16.1 Equation of Undamped Motion:Applied Forces630

16.2 Equation of Undamped Motion:Support Excitation631

16.3 Natural Vibration Frequencies and Modes632

16.4 Modal Orthogonality639

16.5 Modal Analysis of Forced Dynamic Response641

16.6 Earthquake Response History Analysis648

16.7 Earthquake Response Spectrum Analysis653

16.8 Difficulty in Analyzing Practical Systems656

17 Introduction to the Finite Element Method661

Part A:Rayleigh-Ritz Method661

17.1 Formulation Using Conservation of Energy661

17.2 Formulation Using Virtual Work665

17.3 Disadvantages of Rayleigh-Ritz Method667

Part B:Finite Element Method667

17.4 Finite Element Approximation667

17.5 Analysis Procedure669

17.6 Element Degrees of Freedom and Interpolation Functions671

17.7 Element Stiffness Matrix672

17.8 Element Mass Matrix673

17.9 Element (Applied) Force Vector675

17.10 Comparison of Finite Element and Exact Solutions679

17.11 Dynamic Analysis of Structural Continua680

PART Ⅲ EARTHQUAKE RESPONSE AND DESIGN OF MULTISTORY BUILDINGS687

18 Earthquake Response of Linearly Elastic Buildings689

18.1 Systems Analyzed,Design Spectrum,and Response Quantities689

18.2 Influence of T1 and ρ on Response694

18.3 Modal Contribution Factors695

18.4 Influence of T1 on Higher-Mode Response697

18.5 Influence of ρ on Higher-Mode Response700

18.6 Heightwise Variation of Higher-Mode Response701

18.7 How Many Modes to Include703

19 Earthquake Analysis and Response of Inelastic Buildings707

Part A:Nonlinear Response History Analysis708

19.1 Equations of Motion:Formulation and Solution708

19.2 Computing Seismic Demands:Factors To Be Considered709

19.3 Story Drift Demands713

19.4 Strength Demands for SDF and MDF Systems719

Part B:Approximate Analysis Procedures720

19.5 Motivation and Basic Concept720

19.6 Uncoupled Modal Response History Analysis722

19.7 Modal Pushover Analysis729

19.8 Evaluation of Modal Pushover Analysis734

19.9 Simplified Modal Pushover Analysis for Practical Application739

20 Earthquake Dynamics of Base-Isolated Buildings741

20.1 Isolation Systems741

20.2 Base-Isolated One-Story Buildings744

20.3 Effectiveness of Base Isolation750

20.4 Base-Isolated Multistory Buildings754

20.5 Applications of Base Isolation760

21 Structural Dynamics in Building Codes767

Part A:Building Codes and Structural Dynamics768

21.1 International Building Code (United States),2006768

21.2 National Building Code of Canada,2005771

21.3 Mexico Federal District Code,2004773

21.4 Eurocode 8,2004775

21.5 Structural Dynamics in Building Codes778

Part B:Evaluation of Building Codes784

21.6 Base Shear784

21.7 Story Shears and Equivalent Static Forces788

21.8 Overturning Moments790

21.9 Concluding Remarks793

22 Structural Dynamics in Building Evaluation Guidelines795

22.1 Nonlinear Dynamic Procedure:Current Practice796

22.2 SDF-System Estimate of Roof Displacement797

22.3 Estimating Deformation of Inelastic SDF Systems799

22.4 Nonlinear Static Procedure806

22.5 Concluding Remarks812

A Frequency-Domain Method of Response Analysis815

B Notation837

C Answers to Selected Problems849

Index865

热门推荐